Greedy Heuristic for Multidimensional Cubic Knapsack Problem (William) Xuyan Cheng, Dickinson College

Introduction

- 1. What is a knapsack problem?
 - A combinatorial optimization problem where the goal is to maximize the value of items packed into a knapsack with limited weight capacity

- 2. What is a multidimensional cubic knapsack problem (CMKP)?
 - Multidimensional item has weight in multiple dimensions such as the length, width, and height
 - Cubic item has additional combined values. For example, having the green, blue, and orange, box in the knapsack can lead to an additional \$5

Methods

- 1. Instance Generation*
 - Tested instances are generated with different size (n), linea coefficient (c), quadratic coefficient (C), cubic coefficient (weights (a), weight constraint (b), and density (percentage nonzero coefficient)
- 2. Linearization Techniques*
 - To evaluate the effectiveness of the developed heuristics, employed linearization techniques alongside Gurobi solve retrieve the optimal solution given a CMKP. This allows comparison of the heuristics results in small instances
- 3. Notations
 - RHS = weight untaken in the current dimension a)
 - P = potential profit of an element not in knapsack comp b) by considering all items currently in the knapsack
- 4. Heuristics
 - Standard/Naive/Constructive Greedy a)
 - Classic greedy that makes selection based on the bar Ο for-buck ratio – potential profit over weight (p/a)
 - Destructive Greedy b)
 - Instead of starting with no elements, contain all Ο elements to begin with and iteratively remove eleme based on the bang-for-buck ratio
 - Advanced Greedy **C**)
 - Creates a new combined weight evaluation p * min Ο (RHS / a, max_items_fit)
 - The later is calculated by number of items that can f Ο the knapsack starting from the lowest weight item
 - Graduated Probe d)
 - Considers a set of elements from all combination of \bigcirc potential element
 - e) High Value List Iteration Selection e)
 - Creates a VIP list of items based on their coefficient Ο ratio
- 5. Pairwise Exchange
 - A special technique applied for each of the heuristic after it is finished.
- * Not elaborated due to length concerns; Can ask the presenter for more information

Conclusion

ar D), e of	To be finished	Results
, we er to		
uted		
ing-		
ents		
fit in		

